发布时间:2024-04-20 05:23:05 人气:141 次 来源:米乐体育app官方版下载
汽车底盘是指汽车上由传动系统、行驶系统、转向系统和制动系统等部分的组合,其功能包括支承、安装汽车车身、发动机及其它各部件及总成,形成汽车的整体造型,承受发动机动力,保证车辆正常行驶等。
汽车底盘是指汽车上由传动系统、行驶系统、转向系统和制动系统等部分的组合,其功能包括支承、安装汽车车身、发动机及其它各部件及总成,形成汽车的整体造型,承受发动机动力,保证车辆正常行驶等。
汽车的传动系统的功能是把发动机输出的动力送达驱动轮。主要离合器、变速器、传动轴、主减速器、差速器以及半轴等部分组成。
同时其布置形式与发动机的位置及驱动形式有关,一般可分为前置前驱、前置后驱、后置后驱、中置后驱、四驱等多种形式。例如前置后驱的汽车,要将变速器的动力通过传动轴与驱动桥进行连接,那么必须要有适应转向和汽车运行时产生角度变化的装置。
汽车转向系统是使用位于驾驶员前方的方向盘,通过一系列传动机构转动前轮,进而对整车施加横摆角速度和横向位移的控制机构。转向系统包括如下部件:方向盘、转向管柱、转向机(转向器)、转向扭矩传感器、方向盘转角传感器。
按照动力来源,汽车转向系统分为两大类:机械转向系统和动力转向系统。机械转向系统以驾驶员的体力作为转向能源,其中所有传力件都是机械的。机械转向系由转向操纵机构、转向器和转向传动机构三大部分组成。
动力转向系统是兼用驾驶员体力与发动机动力为转向能源的转向系,一般是在机械转向系的基础上加设一套动力转向装置而成。
制动系统是指对汽车某些部分(主要是车轮)施加一定的力,从而对其进行某些特定的程度的强制制动的一系列专门装置。作用是使行驶中的汽车按照驾驶员的要求做强制减速甚至停车;使已停驶的汽车在各种道路条件下(包括在坡道上)稳定驻车;使下坡行驶的汽车速度保持稳定。主要由供能装置、控制装置、传动装置和制动器等部分所组成,常见的制动器主要有鼓式制动器和盘式制动器。
车架是跨接在汽车前后车桥上的框架式结构,是汽车的基体。依照结构形式不同,车架可大致分为边梁式车架、中梁式车架和综合式车架(前部边梁式、后部中梁式)等。
汽车车桥(又称车轴)通过悬架与车架(或承载式车身)相连接,其两端安装车轮。车桥的作用是承受汽车的载荷,维持汽车在道路上的正常行驶。
根据驱动方式的不同,车桥也分成转向桥、驱动桥、转向驱动桥和支持桥四种。其中转向桥和支持桥都属于从动桥。大多数汽车采用前置后驱动(FR),因此前桥作为转向桥,后桥作为驱动桥;而前置前驱动(FF)汽车则前桥成为转向驱动桥,后桥充当支持桥。
车轮是固定轮胎内缘、支持轮胎并与轮胎共同承受负荷的刚性轮,一般由轮辋与轮辐组成。按轮辐的构造,可分为辐板式车轮和辐条式车轮。按车轮材质,可大致分为钢制、铝合金、镁合金等车轮。
轿车和货车上广泛采用辐板式车轮。此外,还有对开式车轮、组装轮辋式车轮、可反装式车轮 、和可调式车轮。
典型的悬挂系统结构由弹性元件、导向机构以及减震器等组成,个别结构则还有缓冲块、横向稳定杆等。弹性元件又有钢板弹簧、空气弹簧、螺旋弹簧以及扭杆弹簧等形式,而现代轿车悬挂系统多采用螺旋弹簧和扭杆弹簧,个别高级轿车则使用空气弹簧。
悬挂可大致分为独立悬挂和非独立悬挂,不同之处在于独立悬挂的左右两个车轮间没有硬轴进行刚性连接,一侧车轮的悬挂部件全部都只与车身相连,而非独立悬挂两个车轮间不是相互独立的,之间有硬轴进行刚性连接。
(2)接受由发动机经传动系传来的转矩,并通过驱动轮与路面间的 附着作用,驱动汽车正常行驶;
(4)与汽车转向系协调配合,实现汽车行驶方向的正确控制,以保证汽车操纵稳定。
智能汽车的感知识别、决策规划、控制执行三个核心系统中,与底盘相关的主要是控制执行,需要对传统汽车的底盘进行线控改造以适用于自动驾驶。
随着电子技术的发展,防抱制动系统(ABS)逐步开始量产应用和推广。ABS主要由ECU控制单元、车轮转速传感器、制动压力调节装置和制动控制电路等部分所组成。在制动过程中,ABS控制单元不断从车轮速度传感器获取车轮的速度信号,并做处理,进而判断车轮是否即将被抱死。
当车轮趋近于抱死临界点时,制动分泵压力不随制动主泵压力增加而增高,压力在抱死临界点附近变化,从而避免车轮抱死,减少了危险事故的发生。
还有一项重要的发明就是车身稳定控制管理系统(ESP),ESP系统其实是一组车身稳定性控制的综合策略,是ABS(防抱死系统)和ASR(驱动轮防滑转系统)功能上的延伸。
ESP主要由控制总成ECU、转向传感器、车轮传感器、侧滑传感器、横向加速度传感器等组成。
当汽车快速行驶或者转向时,产生的横向作用力会使汽车不稳定,易发生意外事故,而ESP系统能将这样的一种情况防患于未然。例如当车辆前面忽然出现障碍物时,驾驶员必须快速向左转弯,此时转向传感器将此信号传递到ESP控制总成,侧滑传感器和横向加速度传感器发出汽车转向不足的信号,这就从另一方面代表着汽车将会直接冲向障碍物。
那么这时ESP系统将会瞬间将后轮紧急制动,这样就能产生转向需要的反作用力,使汽车按照转向意图行驶,避免直接撞向障碍物的事故发生。
对于智能汽车,尤其是L3及以上等级无人驾驶汽车,制动系统的响应时间特别的重要,线控制动响应更快,是实现无人驾驶安全的重要保障。
线控制动系统是在传统的制动系统上发展而来的,使用电系统替代传统的机械或液压系统,是汽车制动技术长期的发展趋势。
传统制动系统由制动踏板施加能量,经液压或气压管路传递至制动器;而线控制动系统执行信息由电信号传递,制动压力响应更快,因此刹车距离更短更安全。
a)电动伺服,电机驱动主缸提供制动液压力源,代表产品Bosch Ibooster、NSK;
b)电液伺服,采用电机+泵提供制动压力源,代表产品Continental MK C1、日立;
1.执行机构和踏板间无机械或液压连接,缩短了制动器的作用时间,有效减小制动距离。
1.由于去除了备用制动系统,EMB系统要有很高的可靠性。必须采集比EHB更可靠的总线.由于制动能量需求较大,需开发42V高电压系统。
总体来看, EHB系统由于具有备用制动系统,安全性较高,因此接受度更高,是目前主要推广量产的方案。
EMB系统虽然具有诸多优点,但缺少备用制动系统且缺少技术上的支持,短期内很难大批量应用,是未来发展的方向。
装配机械式转向系统的汽车,在泊车和低速行驶时驾驶员的转向操纵负担过于沉重,未解决这个问题,美国GM公司在20世纪50年代率先在轿车上采用了液压助力转向系统(HPS),主要由液压泵、油管、压力流体控制阀、传动皮带、储油罐等组成。HPS 系统动力源是发动机,发动机带动转向油泵工作,转向控制阀控制油液流动的方向和油压大小,提供转向助力。
1)电动机和减速机构安装在转向柱或在转向系统内,所占空间小,零部件结构相对比较简单、安装便捷,维护费用低;
2)以电动机为动力,电动机只在需要时才启动,耗用电能较少,提高了汽车的燃油经济性;
3)可实时地在不同的车速下为汽车转向提供不同的助力,保证汽车在低速行驶时轻便灵活,高速行驶时稳定可靠;
4) EPS 系统硬件结构相对比较简单,能够最终靠调整 EPS 控制器的软件,得到最佳的回正性,从而改善汽车操纵的稳定性和舒适性。
对于L3及以上等级智能汽车,部分或全程会脱离驾驶员的操控,因此智能驾驶控制管理系统对于转向系统等要求控制精确、可靠性高,只有线控转向(Steering By Wire, SBW)能够完全满足要求,因此成为转向系统未来的发展趋势。
线控转向系统是指,在驾驶员输入接口(方向盘)和执行机构(转向轮)之间是通过线控(电子信号)连接和控制的转向系统,即在它们之间没有直接的液力或机械连接。
1)转向盘系统,包括转向盘、转矩传感器、转向角传感器、转矩反馈电动机和物理运动装置;
2)电子控制管理系统,包括车速传感器,也能增加横摆角速度传感器、加速度传感器和电子控制单元以提高车辆的操纵稳定性;
3)转向系统,包括角位移传感器、转向电动机、齿轮齿条转向机构和别的机械转向装置等。
3)方向盘转角和转向力矩可以独立设计,适应不一样类型驾驶员对“手感”的要求。
燃油车油耗排放和电动车续航是国内汽车厂商面临的两大挑战,轻量化是处理问题的关键之一,因此也是汽车未来重要的发展方向。
汽车行业很早就开始探索轻量化技术,主要手段包括选用轻质材料、优化结构设计和选择先进制造工艺等。
优化结构设计和先进制造工艺带来的减重效果比较小,因此目前轻量化研究的主要方向是轻质材料,包括高强度钢、铝合金和碳纤维复合材料等。
车身和底盘减重是轻量化的重要部分,相比车身减重,底盘轻量化工艺更成熟、成本更低。根据Lotus Engineering 对车型减重的分析,汽车主要减重部分在车身、底盘以及内饰(主要是座椅减重)。车身和底盘的重量分别在 420kg 和 380kg 左右,合计占整车的重量超过 40%。利用铝、镁等轻量化材料能轻松实现车身、底盘超过 40%的减重,减重质量分别超过 190kg 和160kg。
从竞争要素来看,底盘零部件从钢铁制品到铝合金,材料发生明显的变化,相关的工艺等差别巨大,一方面单车价值量明显提升,另一方面供应链或将重构,新产品对于相关设备投入和技术方面的要求较高,因此在铝合金等产品上具有技术优势和资金优势的供应商有望受益。